COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
SYSTEMS ENGINEERING METHODOLOGY	ESYE505	1	3+0	3	10		

Prerequisites

Language of Instruction	English
Course Level	M. Sc.
Course Type	Compulsory
Course Coordinator	
Instructors	Assist.Prof. Zeynep Ocak
Assistants	
Goals	This course aims to teach systems engineering methodology and its applications in the design and development of complex systems.
Content	Course Introduction; What is Systems Engineering?, INCOSE Model of SE; RCI Model of SE, RCI Systems Engineering Process, Lean Thinking; Set-Based Design, Axiomatic Design; Decision-Based Design; Summary of Frameworks Phase, Quality Function Deployment, Robust Design, System Modeling And Analysis, Systems Engineering In Professional Practice, Extreme Programming, Structure, analysis, design, and models, Architecture Modeling Languages, Applications of SysML to Modeling and Simulation, and Research Paper Presentations.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1. Ability to derive a systems engineering plan for a real world project	4	2	A, C, D
2. Ability to decide on appropriateness of a proposed process, strategy or method for systems engineering using main concepts in probability, economics and cognitive sciences	2	2	A, C, D
3. Ability to implement most important tools of systems engineering (QFD, robust design, etc.)	7	2	A, C, D
4. Ability to foresee the value added to systems engineering processes by modeling and simulation	9	2	A, C, D
5. Ability to construct an effective plan of gathering and using information for systems engineering	3	2	A, C, D
6. Ability to determine the effect of manufacturing, maintenance and wastes on systems' cost and value	5	2	A, C, D

Teaching Methods:	1: Lecture, 2: Paper Discussion, 3: Lab, 4: Case-Study
Assessment Methods:	A: Testing, B: Paper Summary, C: Homework, D: Project

	COURSE CONTENT					
Week	Topics	Study Materials				
1	Course Introduction; What is Systems Engineering?	Textbook, Research Articles				
2	INCOSE Model of SE; RCI Model of SE RCI Systems Engineering Process	INCOSE Manual, Research Articles				
3	Lean Thinking; Set-Based Design	Research Articles				
4	Axiomatic Design; Decision-Based Design; Summary of Frameworks Phase	Research Articles				
5	Quality Function Deployment	Research Articles				
6	Robust Design	Research Articles				
7	Midterm Exam	Research Articles				
8	System Modeling And Analysis	Research Articles				
9	Systems Engineering In Professional Practice	Research Articles				
10	Extreme Programming	Research Articles				
11	Structure, analysis, design, and models	Textbook				
12	Architecture Modeling Languages	Textbook				
13	Applications of SysML to Modeling and Simulation	Textbook				
14	Research Paper Presentations					

	RECOMMENDED SOURCES
Textbook	Decision Making in Systems Engineering and Management by G. S. Parnell, P. J. Driscoll, D. L. Henderson (2008) Architecture and Principles of Systems Engineering by C. E. Dickerson, D. N. Mavris (2008)
Additional Resources	Supplementary reading materials will be available during the term

	MATERIAL SHARING
Documents	Papers on relevant subjects provided

Assignments	3 Homeworks
Exams	1 Midterm, 1 Final Exam

ASSESSMENT					
IN-TERM STUDIES NUMBER PERCE					
Mid-term	1	31			
Assignment	1	23			
Class Participation	1	15			
Term Project	1	31			
Total		100			
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		35			
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		65			
Total		100			

COURSE CATEGORY

Expertise/Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM						
No	Program Learning Outcomes	Contribution					
			2	3	4	5	
1	Ability to understand and apply natural sciences, mathematics and engineering sciences in advanced level.						
2	Ability to possess wide and deep knowledge in the field of Industrial and Systems Engineering including the most recent advances.					x	
3	Ability to possess advanced level of required skill, techniques and methods to conduct research by using and evaluating up-to-date information.					x	
4	Ability to model, design and develop solutions, under realistic constraints, a system, a process or a product by generating innovative and original ideas.					x	
5	Ability to transfer advancements in scientific, technical and cultural developments to the society with the ethical responsibility and scientific					x	

	objectivity.	
6	Ability to perceive, design and apply an original research process independently: manages this process successfully.	
7	Ability to execute a comprehensive study that brings innovation to the science and technology or develops technological product/process or adapts an already known method to a new field.	x
8	Ability to contribute to the development of science and technology literature by publishing research results in respectable scientific platforms.	
9	Ability to analyze, synthesize and evaluate critically the ideas and developments in the field of specialization.	x
10	Ability to communicate effectively in writing, orally and visually with peers and wide scientific and social communities by using a foreign language at a level of European Language Portfolio C1 General Level.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (14x3)	14	3	42			
Reading the course materials	14	7	98			
Midterm examination	1	2	2			
Homework	3	5	15			
Project (Preparation plus presentation)	1	35	35			
Hours of studying for the exams (Midterm and Final)	1	55	55			
Final examination	1	3	3			
Total Work Load			250			
Total Work Load / 25 (h)			10.0			
ECTS Credit of the Course			10			